

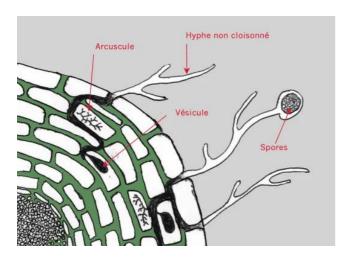
Nice le 08-09-2025 Rapport réalisé par M. Olivier SALIERES / SALIERES SAS – ENERLAB pour la société AXITEC

OBJET: BIOTEST 'COLORATION' - ANALYSE DE LA PRESENCE DE PROPAGULES DE CHAMPIGNONS MYCORHIZIENS DANS DES ECHANTILLONS DE RACINES DE TOMATES

ECHANTILLONS ANALYSES: SIX ECHANTILLONS DE RACINES ONT ETE PRELEVES LE 25-08- 2025 POUR ANALYSE DES CHAMPIGNONS MYCORHIZIENS ARBUSCULAIRES:

1-2-3-4-5-6

MODE OPERATOIRE


Les racines ont été colorées selon la technique décrite par PHILLIPS et HAYMAN (1970)¹. L'estimation du taux de mycorhization fait référence à la méthodologie décrite parTROUVELOT et al (1986)².

Cette méthode permet d'obtenir différents paramètres dont les plus intéressants sont :

F% = FREQUENCE DE LA MYCORHIZATION (pourcentage de racines contenant des structures mycorhiziennes) ; 0% correspond à aucune racine colonisée ; 100% correspond à toutes les racines colonisées

M% = INTENSITE GLOBALE DE MYCORHIZATION (pourcentage de mycorhization à l'intérieur des racines colonisées) ; plus le M% est élevé, plus le champignon mycorhizien est bien implanté dans les racines

a% = INTENSITE ARBUSCULAIRE DE LA PARTIE MYCORHIZEE (pourcentage d'arbuscules parmi les structures mycorhiziennes observées) ; les arbuscules étant le lieu d'échange entre le champignon mycorhizien et la plante, plus il y a d'arbuscules, plus les échanges entre la plante et le champignon sont potentiellement importants.

¹ Philipps J-M., and Hayman D-S. (1970). Improved procedures for clearing roots and staining parasitic and vesiculararbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British MycologicalSociety, 55, 158 161.

² Trouvelot A., Kough J.L., Gianinazzi-Pearson V. (1986). Mesure du taux de mycorhization VA d'un système radiculaire. Recherche de méthodes d'estimation ayant une signification fonctionnelle. Dans Mycorrhizae : physiology and genetics. INRA, Paris, 1986.

RESULTATS D'ANALYSE

L'analyse des racines a montré que tous les échantillons étaient mycorhizés : de F%=98.95% pour l'échantillon 1 à 21.63% pour l'échantillon 5. Plusieurs arbuscule ont été observé dans les échantillons 1-2-3-4.

La présence de vésicules témoigne qu'au moins un cycle complet des champignons a eu lieu, témoignant de la bonne implantation mycorhizienne dans les racines.

Les racines 1-2-3-4 montrent une mycorhization très importantes, permettant à la plante :

- l'amélioration de l'absorption des nutriments

- Les CMA étendent leur réseau de filaments dans le sol, augmentant la surface d'absorption des racines.
- Ils facilitent particulièrement l'acquisition du **phosphore (P)**, mais aussi de l'azote (N), du zinc (Zn) et du cuivre (Cu).

- le renforcement de la tolérance au stress abiotique

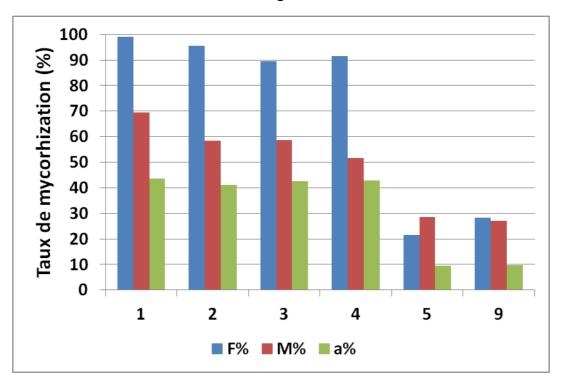
- Les plantes mycorhizées résistent mieux à la **sécheresse**, à la **salinité** et aux variations de température.
- Les CMA améliorent l'équilibre hydrique et la résilience physiologique des plantes.

- la stimulation des défenses contre les pathogènes

- Les CMA induisent une **résistance systémique** qui aide les plantes à se protéger contre divers champignons pathogènes, nématodes et certains insectes.
- Ils renforcent la barrière racinaire et activent des mécanismes de défense métabolique.

- l'amélioration de la structure et de la fertilité des sols

- Les CMA sécrètent une glycoprotéine appelée **glomaline**, qui stabilise les agrégats du sol, améliore l'aération et la rétention d'eau.
- Ils favorisent un sol plus fertile, vivant et durable.


- l'augmentation de la croissance et du rendement des plantes

- Les CMA favorisent une croissance plus rapide et vigoureuse grâce à une meilleure nutrition et à une diminution des stress.
- Ils peuvent accroître la productivité et la qualité des cultures, notamment en agriculture durable.

Tableau

	1	2	3	4	5	9
F%	98,95	95,63	89,62	91,52	21,63	28,32
М%	69,42	58,52	58,65	51,52	28,63	27,08
a%	43,65	41,12	42,58	42,87	9,42	9,68
Notes	vésicules	vésicules	vésicules	vésicules		

Figures

Précisions concernant les valeurs

Echelle du niveau de mycorhization		Echelle du niveau de mycorhization		Echelle du niveau de mycorhization	
Taux de mycorhization (%) F%		Taux de mycorhization (%) M%		Taux de mycorhization (%) a%	
Début de colonisation	1 10%	Début de l'implantation	1 10%	Début des échanges entr l'hôte et le champignon	
Colonisation faible	30%	Implantation faible	30%	Echanges modérés	
Bonne Colonisation	75%	Bonne Implantation	75%	Echanges renforcés	
Colonisation forte	100%	Implantation forte	100%	Echanges optimisés	

Le terme "Colonisation" est utilisé pour tenir compte du pourcentage de racine où l'on trouve des structures mycorhiziennes

Le terme "Implantation" traduit la diversité des structures mycorhiziennes rencontrées : si M% < 10%, ça sera souvent uniquement des hyphes ; Une valeur de M% > 50% s'accompagne de la présence d'hyphes, d'arbuscules et vésicules.

Le terme "Echange" est utilisé car les arbuscules sont les lieux d'échanges entre l'hôte et le(s) champignon(s)